

stackscope: unusually detailed Python stack introspection

stackscope is a library that helps you tell what your running
Python program is doing and how it got there. It can provide detailed
stack traces, similar to what you get in an exception traceback, but
without needing to throw an exception first. Compared to standard
library facilities such as traceback.extract_stack() [https://docs.python.org/3/library/traceback.html#traceback.extract_stack], it is far
more versatile. It supports async tasks, generators, threads, and
greenlets; provides information about active context managers in each
stack frame; and includes a customization interface that library
authors can use to teach it to improve the stack extraction logic for
code that touches their library. (As an example of the latter, the
stack of an async task blocked in a run_in_thread() function could
be made to cover the code that’s running in the thread as well.)

stackscope is loosely affiliated with the Trio [https://trio.readthedocs.io/] async framework, and shares Trio’s
obsessive focus on usability and correctness. The context manager
analysis is especially helpful with Trio since you can use it to
understand where the nurseries are. You don’t have to use stackscope
with Trio, though; it requires only the Python standard library, 3.8
or later, and the ExceptionGroup backport [https://pypi.org/project/exceptiongroup/]
on versions below 3.11.

stackscope is mostly intended as a building block for other
debugging and introspection tools. You can use it directly, but
there’s only rudimentary support for end-user-facing niceties such as
pretty-printed output. On the other hand, the core logic is (believed
to be) robust and flexible, exposing customization points that
third-party libraries can use to help stackscope make better
tracebacks for their code. stackscope ships out of the box with such
“glue” for Trio [https://trio.readthedocs.io/en/stable/], greenback [https://greenback.readthedocs.io/en/latest/], and some of their
lower-level dependencies.

stackscope requires Python 3.8 or later. It is fully
type-annotated and is tested with CPython (every minor version through
3.12) and PyPy, on Linux, Windows, and macOS. It will probably
work on other operating systems. Basic features will work on other
Python implementations, but the context manager decoding will be less
intelligent, and won’t work at all without a usable
gc.get_referents() [https://docs.python.org/3/library/gc.html#gc.get_referents].

Quickstart

Call stackscope.extract() to obtain a stackscope.Stack
describing the stack of a coroutine object, generator iterator (sync
or async), greenlet, or thread. If you want to extract part of the
stack that led to the extract() call, then either pass a
stackscope.StackSlice or use the convenience aliases
extract_since() and extract_until().

Trio users: Try print(stackscope.extract(trio.lowlevel.current_root_task(),
recurse_child_tasks=True)) to print the entire task tree of your
Trio program.

Once you have a Stack, you can:

	Format it for human consumption: str() obtains a tree view as
shown in the example below, or use stack.format()
to customize it or stack.format_flat() to get
an alternate format that resembles a standard Python traceback.

	Iterate over it (or equivalently, its frames attribute) to
obtain a series of stackscope.Frames for programmatic
inspection. Each frame represents one function call. In addition to
the interpreter-level frame object, it lets you access information
about the active context managers in that function (Frame.contexts).

	Look at its leaf attribute to see what’s left once you
peel away all the frames. For example, this might be some atomic
awaitable such as an asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future]. It will be None if the
frames tell the whole story.

	Use its as_stdlib_summary() method to get a standard library
traceback.StackSummary [https://docs.python.org/3/library/traceback.html#traceback.StackSummary] object (with some loss of information),
which can be pickled or passed to non-stackscope-aware tools.

Example

This code uses a number of context managers:

from contextlib import contextmanager, ExitStack

@contextmanager
def null_context():
 yield

def some_cb(*a, **kw):
 pass

@contextmanager
def inner_context():
 stack = ExitStack()
 with stack:
 stack.enter_context(null_context())
 stack.callback(some_cb, 10, "hi", answer=42)
 yield "inner"

@contextmanager
def outer_context():
 with inner_context() as inner:
 yield "outer"

def example():
 with outer_context():
 yield

def call_example():
 yield from example()

gen = call_example()
next(gen)

You can use stackscope to inspect the state of the partially-consumed generator
gen, showing the tree structure of all of those context managers:

$ python3 -i example.py
>>> import stackscope
>>> stack = stackscope.extract(gen)
>>> print(stack)
stackscope.Stack (most recent call last):
╠ call_example in __main__ at [...]/stackscope/example.py:28
║ └ yield from example()
╠ example in __main__ at [...]/stackscope/example.py:25
║ ├ with outer_context(): # _: _GeneratorContextManager (line 24)
║ │ ╠ outer_context in __main__ at [...]/stackscope/example.py:21
║ │ ║ ├ with inner_context() as inner: # inner: _GeneratorContextManager (line 20)
║ │ ║ │ ╠ inner_context in __main__ at [...]/stackscope/example.py:16
║ │ ║ │ ║ ├ with stack: # stack: ExitStack (line 13)
║ │ ║ │ ║ ├── stack.enter_context(null_context(...)) # stack[0]: _GeneratorContextManager
║ │ ║ │ ║ │ ╠ null_context in __main__ at [...]/stackscope/example.py:5
║ │ ║ │ ║ │ ║ └ yield
║ │ ║ │ ║ ├── stack.callback(__main__.some_cb, 10, 'hi', answer=42) # stack[1]: function
║ │ ║ │ ║ └ yield "inner"
║ │ ║ └ yield "outer"
║ └ yield

That full tree structure is exposed for programmatic inspection as well:

>>> print(stack.frames[1].contexts[0].inner_stack.frames[0].contexts[0])
inner_context(...) # inner: _GeneratorContextManager (line 20)
╠ inner_context in __main__ at /Users/oremanj/dev/stackscope/example.py:16
║ ├ with stack: # stack: ExitStack (line 13)
║ ├── stack.enter_context(null_context(...)) # stack[0]: _GeneratorContextManager
║ │ ╠ null_context in __main__ at /Users/oremanj/dev/stackscope/example.py:5
║ │ ║ └ yield
║ ├── stack.callback(__main__.some_cb, 10, 'hi', answer=42) # stack[1]: function
║ └ yield "inner"

Of course, if you just want a “normal” stack trace without the added information,
you can get that too:

>>> print("".join(stack.format_flat()))
stackscope.Stack (most recent call last):
 File "/Users/oremanj/dev/stackscope/example.py", line 28, in call_example
 yield from example()
 File "/Users/oremanj/dev/stackscope/example.py", line 25, in example
 yield

Detailed documentation

	Extracting and inspecting stacks
	Extracting a stack

	Working with stacks

	Customizing stackscope for your library
	Overview of customization hooks

	Utilities for use in customization hooks

	Customization hooks reference

	Low-level introspection tools and utilities
	Extracting context managers

	Frame analysis pieces

	Code-object-based dispatch utilities

	Release history
	stackscope 0.2.2 (2024-02-27)

	stackscope 0.2.1 (2024-02-02)

	stackscope 0.2.0 (2023-12-22)

	stackscope 0.1.0 (2023-04-12)

Indices and tables

	Index

	Module Index

	Search Page

	Glossary [https://trio.readthedocs.io/en/stable/glossary.html#glossary]

Extracting and inspecting stacks

Extracting a stack

The main entry point for stackscope is the stackscope.extract() function.
It comes in several variants:

	extract() accepts a “stack item”, which is anything stackscope
knows how to turn into a series of frame objects. This might be a
StackSlice, coroutine object, generator iterator, thread,
greenlet, trio.lowlevel.Task [https://trio.readthedocs.io/en/stable/reference-lowlevel.html#trio.lowlevel.Task], or anything else for which a library
author (maybe you) have added support through the unwrap_stackitem()
customization hook.

	extract_since() and extract_until() obtain a stack for
the callees or callers (respectively) of a currently-executing
frame. Use extract_since(None) to get the full stack of the
thread that made the extract_since() call, like inspect.stack() [https://docs.python.org/3/library/inspect.html#inspect.stack].
These are aliases for invoking extract() with a StackSlice.

	extract_outermost() returns the outermost Frame that
extract() would return, without computing the whole stack.

	
stackscope.extract(stackitem: StackItem, *, with_contexts: bool [https://docs.python.org/3/library/functions.html#bool] = True, recurse_child_tasks: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Stack

	Extract a Stack from stackitem.

stackitem may be anything that has a stack associated with it.
If you want to dump the caller’s stack or the stack starting or
ending with some frame, then either pass a StackSlice or use
extract_since() or extract_until(), which are shortcuts
for passing a StackSlice to extract(). Besides that,
stackscope also ships with support for threads, greenlets,
generator iterators (sync and async), coroutine objects, and a few
more obscure things that might be encountered while traversing
those; and libraries may add support for more using the
unwrap_stackitem hook.

If with_contexts is True (the default), then each returned
Frame will have a contexts attribute specifying the
context managers that are currently active in that frame. If you
don’t care about this information, then specifying with_contexts=False
will substantially simplify the stack extraction process.

Some context managers might logically contain other tasks that
each have their own Stack: trio.Nursery [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery], asyncio.TaskGroup [https://docs.python.org/3/library/asyncio-task.html#asyncio.TaskGroup],
etc. These will be listed as Context.children in the returned
Frame.contexts for these context managers. If
recurse_child_tasks is False (the default), then these “child
tasks” will be rendered as stub Stack objects with only a
root (the child task object) but no frames. If
recurse_child_tasks is True, then the child stacks will be fully
populated, including grandchildren and so on.

extract() tries not to throw exceptions; any exception should
be reported as a bug. Errors encountered during stack extraction
are reported in the error attribute of the returned
object. If multiple errors are encountered, they will be wrapped in
an ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup].

	
stackscope.extract_since(outer_frame: types.FrameType | None [https://docs.python.org/3/library/constants.html#None], *, with_contexts: bool [https://docs.python.org/3/library/functions.html#bool] = True, recurse_child_tasks: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Stack

	Return a Stack reflecting the currently-executing frames that were
directly or indirectly called by outer_frame, including outer_frame itself.
Equivalent to extract(StackSlice(outer=outer_frame)) with more type checking.

If outer_frame is a frame on the current thread’s stack, the result
will start with outer_frame and end with the immediate
caller of extract_since().

If outer_frame is a frame on some other thread’s stack, and it remains
there throughout the traceback extraction process, the resulting
stack will start with outer_frame and end with some frame
that was recently the innermost frame on that thread’s stack.

Note

If other_frame is not continuously on the same other thread’s
stack during the extraction process, you’re likely to get
a one-frame stack, maybe with an error. It’s not possible to prevent
thread switching from within Python code, so we can’t do better than
this without a C extension.

If outer_frame is None, the result contains all frames
on the current thread’s stack, starting with the outermost and ending
with the immediate caller of extract_since().

In any other case – if outer_frame belongs to a suspended
coroutine, generator, greenlet, or if it starts or stops running
on another thread while extract_since() is executing – you will get
a Stack containing information only on outer_frame itself;
depending on the situation, its error member might
describe the reason more information can’t be provided.

	
stackscope.extract_until(inner_frame: types.FrameType, *, limit: int [https://docs.python.org/3/library/functions.html#int] | types.FrameType | None [https://docs.python.org/3/library/constants.html#None] = None, with_contexts: bool [https://docs.python.org/3/library/functions.html#bool] = True, recurse_child_tasks: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Stack

	Return a Stack reflecting the currently executing frames that are
direct or indirect callers of inner_frame, including
inner_frame itself.

If inner_frame belongs to a suspended coroutine or
generator, or if it otherwise is not linked to other frames
via its f_back attribute, then the returned traceback will
contain only inner_frame and not any of its callers.

If a limit is specified, only some of the callers of
inner_frame will be returned. If the limit is a frame, then it
must be an indirect caller of inner_frame and it will be the
first frame in the result; any of its callers will be excluded.
Otherwise, the limit must be a positive integer, and the
traceback will start with the limit’th parent of inner_frame.

Equivalent to extract(StackSlice(outer=outer_frame, limit=limit)) or
extract(StackSlice(outer=outer_frame, inner=limit)) depending on the
type of limit, except that extract_until() does more checking of
its inputs (an exception will be raised if limit has an invalid type
or is a frame that isn’t an indirect caller of inner_frame).

	
stackscope.extract_outermost(stackitem: StackItem, *, with_contexts: bool [https://docs.python.org/3/library/functions.html#bool] = True, recurse_child_tasks: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Frame

	Extract the outermost Frame from stackitem.

extract_outermost() produces the same result as calling extract()
and returning the first Frame of the returned stack, but might be faster
since it can stop once it’s extracted one frame. If the result has
no Frames, an exception will be thrown.

	
class stackscope.StackSlice(outer: types.FrameType | None [https://docs.python.org/3/library/constants.html#None] = None, inner: types.FrameType | None [https://docs.python.org/3/library/constants.html#None] = None, limit: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Identifies a contiguous series of frames that we want to analyze.

StackSlice has no logic on its own; its only use is as something to
pass to extract() or return from an unwrap_stackitem() hook.

This can be used in three different ways:

	If inner is not None, then the StackSlice logically
contains currently-executing frames that are direct or
indirect callers of inner, ending with inner itself.
Iteration begins with inner and proceeds outward via
frame.f_back links until the frame outer is reached
or limit frames have been extracted. If neither of those is
specified, then the stack slice starts with the outermost frame
of the thread on which inner is running.

If inner belongs to a suspended coroutine or
generator, or if it otherwise is not linked to other frames
via its f_back attribute, then the returned traceback will
contain only inner and not any of its callers.

	If inner is None but outer is not, the StackSlice
contains outer followed by its currently-executing direct
and indirect callees, up to limit frames total.

If outer is executing on the current thread, then the
StackSlice ends with the frame that called stackscope.extract()
(unless it is cut off before that by reaching its limit).
If it is executing on some other thread, and remains so throughout
the stack extraction process, then the StackSlice ends with the
innermost frame on that thread. In any other case – if outer
belongs to a suspended coroutine, generator, greenlet, or if it starts
or stops running on another thread while stackscope.extract()
is executing – the returned stack will contain information only on
outer itself.

	If inner and outer are both None, the StackSlice
contains the entirety of the current thread’s stack, ending with
the frame that made the call to stackscope.extract().

	
outer: types.FrameType | None [https://docs.python.org/3/library/constants.html#None] = None

	The outermost frame to extract. If unspecified, start from
inner (or the caller of stackscope.extract() if
inner is None) and iterate outward until top-of-stack
is reached or limit frames have been extracted.

	
inner: types.FrameType | None [https://docs.python.org/3/library/constants.html#None] = None

	The innermost frame to extract. If unspecified, extract all the
currently-executing callees of outer, up to limit frames
total.

	
limit: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None

	The maximum number of frames to extract. If None, there is no limit.

	
class stackscope.StackItem

	Placeholder used in type hints to mean “anything you can pass to
extract().”

	
exception stackscope.InspectionWarning

	Warning raised if something goes awry during frame inspection.

Working with stacks

This section documents the Stack object that extract()
returns, as well as the Frame and Context objects that it refers
to. All of these are dataclasses [https://docs.python.org/3/library/dataclasses.html#module-dataclasses]. Their primary purpose is to
organize the data returned by extract().

	
class stackscope.Stack(root: object [https://docs.python.org/3/library/functions.html#object], frames: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Frame], leaf: object [https://docs.python.org/3/library/functions.html#object] = None, error: Exception [https://docs.python.org/3/library/exceptions.html#Exception] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Representation of a generalized call stack.

In addition to the attributes described below, you can treat a Stack
like an iterable over its frames, and its len() is the number
of frames it contains.

	
frames: Sequence[Frame]

	The series of frames (individual calls) in the call stack,
from outermost/oldest to innermost/newest.

	
root: object [https://docs.python.org/3/library/functions.html#object]

	The object that was originally passed to extract() to produce
this stack trace, or None [https://docs.python.org/3/library/constants.html#None] if the trace was created from a
StackSlice (which doesn’t carry any information beyond the frames).

	
leaf: object [https://docs.python.org/3/library/functions.html#object] = None

	An object that provides additional context on what this call stack
is doing, after you peel away all the frames.

If this callstack comes from a generator that is yielding from an
iterator which is not itself a generator, or comes from an
async function that is awaiting an awaitable which is not
itself a coroutine, then leaf will be that iterator or awaitable.

Library glue may provide additional semantics for leaf; for
example, the call stack of an async task that is waiting on an
event might set leaf to that event.

If there is no better option, leaf will be None.

	
error: Exception [https://docs.python.org/3/library/exceptions.html#Exception] | None [https://docs.python.org/3/library/constants.html#None] = None

	The error encountered walking the stack, if any.
(stackscope does its best to not actually raise exceptions
out of extract().)

	
format(*, ascii_only: bool [https://docs.python.org/3/library/functions.html#bool] = False, show_contexts: bool [https://docs.python.org/3/library/functions.html#bool] = True, show_hidden_frames: bool [https://docs.python.org/3/library/functions.html#bool] = False) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Return a list of newline-terminated strings describing
this object, which may be printed for human consumption.
str(obj) is equivalent to "".join(obj.format()).

	Parameters:

	
	ascii_only – Use only ASCII characters in the output.
By default, Unicode line-drawing characters are used.

	show_contexts – Include information about context managers in the output.
This is the default; pass False for a shorter stack trace that
only includes frames in the main series.

	show_hidden_frames – Include frames in the output even if they are
marked as hidden. By default, hidden frames will be suppressed.
See Frame.hide for more details.

	
format_flat(*, show_contexts: bool [https://docs.python.org/3/library/functions.html#bool] = False) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Return a list of newline-terminated strings providing a flattened
representation of this stack.

This will be formatted similarly to a standard Python
traceback, such as might be produced if an exception were
raised at the point where the stack was extracted.
Context manager information is not included by default, but can be
requested using the show_contexts parameter.

	
as_stdlib_summary(*, show_contexts: bool [https://docs.python.org/3/library/functions.html#bool] = False, show_hidden_frames: bool [https://docs.python.org/3/library/functions.html#bool] = False, capture_locals: bool [https://docs.python.org/3/library/functions.html#bool] = False) → StackSummary [https://docs.python.org/3/library/traceback.html#traceback.StackSummary]

	Return a representation of this stack as a standard
traceback.StackSummary [https://docs.python.org/3/library/traceback.html#traceback.StackSummary]. Unlike the Stack object, a
StackSummary [https://docs.python.org/3/library/traceback.html#traceback.StackSummary] can be pickled and will not keep
frames alive, at the expense of some loss of information.

If show_contexts is True, then additional frame summaries
will be emitted describing the context managers active in each
frame. See the documentation of
Frame.as_stdlib_summary_with_contexts() for details.

By default, hidden frames (Frame.hide) are not included in
the output. You can use the show_hidden_frames parameter to
override this.

capture_locals is passed through to the
Frame.as_stdlib_summary() calls for each stack frame;
see that method’s documentation for details on its semantics.

	
class stackscope.Frame(pyframe: types.FrameType, lineno: int [https://docs.python.org/3/library/functions.html#int] = -1, origin: StackItem | None [https://docs.python.org/3/library/constants.html#None] = None, contexts: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Context] = (), hide: bool [https://docs.python.org/3/library/functions.html#bool] = False, hide_line: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Representation of one call frame within a generalized call stack.

	
pyframe: types.FrameType

	The Python frame object [https://docs.python.org/3/reference/datamodel.html#frame-objects]
that this frame describes.

	
lineno: int [https://docs.python.org/3/library/functions.html#int] = -1

	A line number in pyframe.

This is the currently executing line number, or the line number at which
it will resume execution if currently suspended by a yield statement or
greenlet switch, as captured when the Frame object was constructed.

	
origin: StackItem | None [https://docs.python.org/3/library/constants.html#None] = None

	The innermost weak-referenceable thing that we looked inside to
find this frame, or None. Frames themselves are not
weak-referenceable, but extract_outermost(frame.origin).pyframe
will recover the original frame.pyframe. For example, when
traversing an async call stack, origin might be a coroutine
object or generator iterator.

This is exposed for use in async debuggers, which might want a way to
get ahold of a previously-reported frame if it’s still running, without
keeping it pinned in memory if it’s finished.

	
contexts: Sequence[Context] = ()

	The series of contexts (with or async with blocks) that
are active in this frame, from outermost to innermost. A context is
considered “active” for this purpose from the point where its manager’s
__enter__ or __aenter__ method returns until the point where
its manager’s __exit__ or __aexit__ method returns.

	
hide: bool [https://docs.python.org/3/library/functions.html#bool] = False

	If true, this frame relates to library internals that are likely
to be more distracting than they are useful to see in a traceback.
Analogous to the __tracebackhide__ variable supported by pytest.
Hidden frames are suppressed by default when printing stacks, but
this can be controlled using the show_hidden_frames argument
to format().

	
hide_line: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Limited version of hide which by default suppresses display of the
executing line, but not of the function information or context managers
associated with the frame. As with hide, you can force the hidden
information to be displayed by specifying the show_hidden_frames
argument to format().

	
property filename: str [https://docs.python.org/3/library/stdtypes.html#str]

	The filename of the Python file from which the code executing in
this frame was imported.

	
property funcname: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of the function executing in this frame.

	
property clsname: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	The name of the class that contains the function executing in this frame,
or None if we couldn’t determine one.

This is determined heuristically, based on the executing function having a
first argument named self or cls, so it can be fooled.

	
property modname: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	The name of the module that contains the function executing in this frame,
or None if we couldn’t determine one.

This is looked up using the __name__ attribute of the frame’s globals
namespace. It can be fooled, but usually won’t be. Another option, which
is possibly more reliable but definitely much slower, would be to iterate
through sys.modules [https://docs.python.org/3/library/sys.html#sys.modules] looking for a module whose __file__ matches
this frame’s filename.

	
property linetext: str [https://docs.python.org/3/library/stdtypes.html#str]

	The text of the line of source code that this stack entry
describes. The result has leading and trailing whitespace
stripped, and does not end in a newline.

	
format(*, ascii_only: bool [https://docs.python.org/3/library/functions.html#bool] = False, show_contexts: bool [https://docs.python.org/3/library/functions.html#bool] = True, show_hidden_frames: bool [https://docs.python.org/3/library/functions.html#bool] = False) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Return a list of newline-terminated strings describing
this object, which may be printed for human consumption.
str(obj) is equivalent to "".join(obj.format()).

	Parameters:

	
	ascii_only – Use only ASCII characters in the output.
By default, Unicode line-drawing characters are used.

	show_contexts – Include information about context managers in the output.
This is the default; pass False for a shorter stack trace that
only includes frames in the main series.

	show_hidden_frames – Include frames in the output even if they are
marked as hidden. By default, hidden frames will be suppressed.
See Frame.hide for more details.

	
as_stdlib_summary(*, capture_locals: bool [https://docs.python.org/3/library/functions.html#bool] = False) → FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary]

	Return a representation of this frame entry as a standard
traceback.FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary] object. Unlike the Frame object, a
FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary] can be pickled and will not keep frames alive,
at the expense of some loss of information.

If capture_locals is True, then the returned
FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary] will contain the stringified object
representations of local variables in the frame, just like
passing capture_locals=True to
traceback.StackSummary.extract() [https://docs.python.org/3/library/traceback.html#traceback.StackSummary.extract].

	
for ... in as_stdlib_summary_with_contexts(*, show_hidden_frames: bool [https://docs.python.org/3/library/functions.html#bool] = False, capture_locals: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary]]

	Return a representation of this frame and its context managers as
a series of standard traceback.FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary] objects.

The last yielded FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary] matches what
as_stdlib_summary() would return. Before that, one or
more FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary] objects will be yielded for
each of the active contexts in this frame. Each context will
get one FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary] introducing it (pointing to
the start of the with or async with block), followed
by zero or more frames containing any relevant substructure,
such as elements in an ExitStack [https://docs.python.org/3/library/contextlib.html#contextlib.ExitStack] or nested
context managers within a @contextmanager [https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager] function. The order of
FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary] objects is intended to hew as
closely as possible to the (reverse) path that an exception
would take if it were to propagate up the call stack.
That is, the result of as_stdlib_summary_with_contexts()
should ideally look pretty similar to what you would see when
printing out a traceback after an exception.

A FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary] that introduces a context will
append some additional information (the type of the context
manager and the name that its result was assigned to) to the
function name in the returned object, in parentheses after a
space. This results in reasonable output from
traceback.StackSummary.format() [https://docs.python.org/3/library/traceback.html#traceback.StackSummary.format].

By default, hidden frames (Frame.hide) encountered during
context manager traversal are not included in the output. You
can use the show_hidden_frames parameter to override this.
The frame on which you called as_stdlib_summary_with_contexts()
will be included unconditionally.

If capture_locals is True, then the local reprs
will be included in each FrameSummary [https://docs.python.org/3/library/traceback.html#traceback.FrameSummary],
as with as_stdlib_summary(). Frame summaries that
introduce a context will include the stringified context
manager object as a fictitious local called "<context manager>".

	
class stackscope.Context(obj: object [https://docs.python.org/3/library/functions.html#object], is_async: bool [https://docs.python.org/3/library/functions.html#bool], is_exiting: bool [https://docs.python.org/3/library/functions.html#bool] = False, varname: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, start_line: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, description: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, inner_stack: Stack | None [https://docs.python.org/3/library/constants.html#None] = None, children: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Context | Stack] = (), hide: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Information about a context manager active within a frame.

	
obj: object [https://docs.python.org/3/library/functions.html#object]

	The object that best describes what this context is doing.
By default, this is the context manager object (the thing with the
__enter__/__aenter__ and __exit__/__aexit__ methods),
but library glue may override it to provide something more helpful.
For example, an async with trio.open_nursery(): block will put
the trio.Nursery [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery] object here instead of the context manager that
wraps it.

	
is_async: bool [https://docs.python.org/3/library/functions.html#bool]

	True for an async context manager, False for a sync context manager.

	
is_exiting: bool [https://docs.python.org/3/library/functions.html#bool] = False

	True if this context manager is currently exiting, i.e., the next
thing in the traceback is a call to its __exit__ or __aexit__.

	
varname: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None

	The name that the result of the context manager was assigned to.
In with foo() as bar:, this is the string "bar".
This may be an expression representing any valid assignment
target, not just a simple identifier, although a simple identifier
is by far the most common case. If the context manager result was
not assigned anywhere, or if its assignment target was too complex
for us to reconstruct, name will be None.

	
start_line: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None

	The line number on which the with or async with block
started, or None if we couldn’t determine it. (In order to
determine the corresponding filename, you need to know which
Frame this Context is associated with.)

	
description: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None

	A description of the context manager suitable for human-readable
output. By default this is None, meaning we don’t know how to
do better than repr(obj), but library glue
may augment it in some cases, such as to provide the arguments
that were passed to a @contextmanager function.

	
inner_stack: Stack | None [https://docs.python.org/3/library/constants.html#None] = None

	The call stack associated with the implementation of this context
manager, if applicable. For a @contextmanager function, this
will typically contain a single frame, though it might be more if
the function uses yield from. In most other cases there are
no associated frames so stack will be None.

	
children: Sequence[Context | Stack] = ()

	The other context managers or child task stacks that are
logically nested inside this one, if applicable. For example,
an ExitStack [https://docs.python.org/3/library/contextlib.html#contextlib.ExitStack] will have one entry here per thing
that was pushed on the stack, and a trio.Nursery [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery] will have one
entry per child task running in the nursery.

	
hide: bool [https://docs.python.org/3/library/functions.html#bool] = False

	If true, this context manager relates to library internals that are likely
to be more distracting than they are useful to see in a traceback.
Analogous to the __tracebackhide__ variable supported by pytest.
Hidden context managers are suppressed by default when printing stacks,
but this can be controlled using the show_hidden_frames argument
to format().

	
format(*, ascii_only: bool [https://docs.python.org/3/library/functions.html#bool] = False, show_contexts: bool [https://docs.python.org/3/library/functions.html#bool] = True, show_hidden_frames: bool [https://docs.python.org/3/library/functions.html#bool] = False) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Return a list of newline-terminated strings describing
this object, which may be printed for human consumption.
str(obj) is equivalent to "".join(obj.format()).

	Parameters:

	
	ascii_only – Use only ASCII characters in the output.
By default, Unicode line-drawing characters are used.

	show_contexts – Include information about context managers in the output.
This is the default; pass False for a shorter stack trace that
only includes frames in the main series.

	show_hidden_frames – Include frames in the output even if they are
marked as hidden. By default, hidden frames will be suppressed.
See Frame.hide for more details.

Customizing stackscope for your library

stackscope contains several customization hooks that allow it to be
adapted to provide good stack traces for context managers, awaitables,
and control-flow primitives that it doesn’t natively know anything about.
These are implemented either as @functools.singledispatch [https://docs.python.org/3/library/functools.html#functools.singledispatch]
functions (which dispatch to a different implementation depending on the type of
their first argument) or as @stackscope.lowlevel.code_dispatch functions (which dispatch to a different
implementation depending on the identity of the Python code object associated
with their first argument). Implementations of these hooks that support a
particular library are referred to as stackscope “glue” for that library.

If you’re working with a library that could be better-supported by stackscope,
you have two options for implementing that support:

	If you maintain the library that the customizations are intended to
support, then define a function named _stackscope_install_glue_
at top level in any of your library’s module(s), which takes no
arguments and returns None. The body of the function should register
customization hooks appropriate to your library, using the
stackscope APIs described in the rest of this section. As long as you
only write import stackscope inside the body of the glue installation
function, this won’t require that users of your library install stackscope,
but they will benefit from your glue if they do.

	If you’re contributing glue for a library you don’t maintain, you
can put the glue in stackscope instead. We have glue for several
modules and a system that avoids registering it unless the module
has been imported. See stackscope/_glue.py, and feel free to
submit a PR.

If the same module has glue implemented using both of these methods,
then the glue provided by the module will be used; the glue
shipped with stackscope is ignored. This allows for a module’s glue to
start out being shipped with stackscope and later “graduate” to being
maintained upstream.

Overview of customization hooks

In order to understand the available customization hooks, it’s helpful
to know how stackscope’s stack extraction works internally. There are
separate systems for frames and for context managers, and they can
interact with each other recursively.

Frames

There are two hooks that are relevant in determining the frames in the
returned stack: unwrap_stackitem() and elaborate_frame().

unwrap_stackitem() receives a “stack item”, which may have been
passed to stackscope.extract() or returned from an
elaborate_frame() or unwrap_stackitem() hook. It is
dispatched based on the Python type of the stack item. Abstractly
speaking, a stack item should be something that logically has Python
frame objects associated with it, and the job of
unwrap_stackitem() is to turn it into something that is closer
to those frame objects. unwrap_stackitem() may return a single
stack item, a sequence thereof, or None if it can’t do any unwrapping.
Each returned stack item is recursively unwrapped in the same way until
no further unwrapping can be done. The resulting frame objects become the
basis for the Stack.frames and any non-frame-objects go in Stack.leaf.

Example: built-in glue for unwrapping a generator iterator:

@unwrap_stackitem.register(types.GeneratorType)
def unwrap_geniter(gen: types.GeneratorType[Any, Any, Any]) -> Any:
 if gen.gi_running:
 return StackSlice(outer=gen.gi_frame)
 return (gen.gi_frame, gen.gi_yieldfrom)

elaborate_frame() operates after unwrapping is complete, and is
dispatched based on the code object identity of the executing frame,
so it’s useful for customizations that are specific to a particular
function. (You get approximately one code object per source file
location of a function definition.) It receives the frame it is
elaborating as well as the next inner frame-or-leaf for context. It
can customize the Frame object, such as by setting the Frame.hide
attribute or modifying the Frame.contexts. It can also redirect the
rest of the stack extraction, by returning a stack item or sequence of
stack items that will be used in place of the otherwise-next frame and
all of its callees. (If it returns a sequence that ends with the
otherwise-next frame, then the preceding elements are inserted before
the rest of the stack trace rather than replacing it.)

Example: glue for elaborating greenback.await_() [https://greenback.readthedocs.io/en/latest/reference.html#greenback.await_]:

@elaborate_frame.register(greenback.await_)
def elaborate_greenback_await(
 frame: Frame, next_inner: object
) -> object:
 frame.hide = True

 if (
 isinstance(next_inner, Frame)
 and next_inner.pyframe.f_code.co_name != "switch"
):
 # await_ that's not suspended at greenlet.switch() requires
 # no special handling
 return None

 # Greenback-mediated await of async function from sync land.
 # If we have a coroutine to descend into, do so;
 # otherwise the traceback will unhelpfully stop here.
 # This works whether the coro is running or not.
 # (The only way to get coro=None is if we're taking
 # the traceback in the early part of await_() before
 # coro is assigned.)
 return frame.pyframe.f_locals.get("coro")

Contexts

There are three hooks relevant in determining the context
managers in the returned stack: unwrap_context(),
unwrap_context_generator(), and
elaborate_context(). They are less complex than the frame hooks
since they only operate on one context manager at a time.

unwrap_context() handles context managers that wrap other context
managers. It receives the “outer” context manager and returns the “inner”
one, or returns None to indicate no further unwrapping is needed. It is
dispatched based on the type of the outer context manager. When using
unwrap_context(), the “outer” context manager is totally lost; it
appears to stackscope, and to clients of extract(), as though only
the “inner” one ever existed. If you prefer to include both, you can
assign to the Context.children attribute in elaborate_context()
instead.

Example: glue for elaborating greenback.async_context [https://greenback.readthedocs.io/en/latest/reference.html#greenback.async_context] objects:

@unwrap_context.register(greenback.async_context)
def unwrap_greenback_async_context(manager: Any) -> Any:
 return manager._cm

unwrap_context_generator() is a specialization of
unwrap_context() for generator-based context managers
(@contextmanager [https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager] and
@asynccontextmanager [https://docs.python.org/3/library/contextlib.html#contextlib.asynccontextmanager]). It works
exactly like unwrap_context() except that it takes as its first
argument the generator’s Stack rather than the context manager
object. Like elaborate_frame(), unwrap_context_generator()
is dispatched based on the code object identity of the function that
implements the context manager, so you can unwrap different generator-based
context managers in different ways even though their context manager
objects all have the same type.

elaborate_context() is called once for each context manager
before trying to unwrap it, and again after each successful
unwrapping. It is dispatched based on the context manager type and
fills in attributes of the Context object, such as
Context.description, Context.children, and
Context.inner_stack. These Context attributes might be filled out
using calls to fill_context() or extract(), which will
recursively execute context/frame hooks as
needed. elaborate_context() can also change the Context.obj
which may influence further unwrapping attempts.

Example: glue for handling generator-based @contextmanager [https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager]s:

@elaborate_context.register(contextlib._GeneratorContextManagerBase)
def elaborate_generatorbased_contextmanager(mgr: Any, context: Context) -> None:
 # Don't descend into @contextmanager frames if the context manager
 # is currently exiting, since we'll see them later in the traceback
 # anyway
 if not context.is_exiting:
 context.inner_stack = stackscope.extract(mgr.gen)
 context.description = f"{mgr.gen.__qualname__}(...)"

Utilities for use in customization hooks

	
stackscope.extract_child(stackitem: StackItem, *, for_task: bool [https://docs.python.org/3/library/functions.html#bool]) → Stack

	Perform a recursive call equivalent to extract(stackitem), but
reusing the options that were passed to the original extract().
You should only call this from within a customization hook such as elaborate_context().

If for_task is True, then this nested stackitem is considered to
represent an async child task. Its stack will be fully extracted only
if the outer extract() call specified recurse_child_tasks=True;
otherwise you will get a stub Stack with a root but no
frames.

	
stackscope.fill_context(context: Context) → None [https://docs.python.org/3/library/constants.html#None]

	Augment the given newly-constructed Context object using the
context manager hooks (unwrap_context() and elaborate_context()),
calling both hooks in a loop until a steady state is reached.

Customization hooks reference

	
stackscope.unwrap_stackitem(item: StackItem) → StackItem | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][StackItem] | FrameIterator[StackItem] | None [https://docs.python.org/3/library/constants.html#None]

	Hook for turning something encountered during stack traversal into
one or more objects that are easier to understand than it, eventually
resulting in a Python frame. May return a single object, a sequence of
objects, or None if we don’t know how to unwrap any further. When
extracting a stack, unwrap_stackitem() will be applied repeatedly
until a series of frames results.

The built-in unwrapping rules serve as good examples here:

	Unwrapping a coroutine object, generator iterator, or async generator
iterator produces a tuple (frame, next) where frame is a Python
frame object and next is the thing being awaited or yielded-from
(potentially another coroutine object, generator iterator, etc).

	Unwrapping a threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread] produces the sequence of frames that
form the thread’s stack, from outermost to innermost.

	Unwrapping an async generator asend() or athrow() awaitable
produces the async generator it is operating on.

	Unwrapping a coroutine_wrapper object produces the coroutine
it is wrapping. This allows stackscope to look inside most
awaitable objects. (A “coroutine wrapper” is the object returned when
you call coro.__await__() on a coroutine object, which acts
like a coroutine object except that it also implements __next__.)

	
stackscope.yields_frames(fn: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[P], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][T]]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[P], FrameIterator[T]]

	Decorator for an unwrap_stackitem() implementation which allows
the series of stack items to be yielded one-by-one instead of returned
in a sequence.

The main benefit of this approach is that previously-yielded
frames can be preserved even if an exception is raised. It is used
by the built-in glue that handles StackSlice objects. A
decorator is needed to distinguish an iterator of stack items
(which should be unpacked and treated one-by-one) from a generator
iterator with a different purpose (which is a common stack item
that we definitely should not iterate over).

Put @yields_frames underneath @unwrap_stackitem.register.

	
stackscope.elaborate_frame(frame: Frame, next_inner: object [https://docs.python.org/3/library/functions.html#object]) → StackItem | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][StackItem] | None [https://docs.python.org/3/library/constants.html#None]

	Hook for providing additional information about a frame encountered
during stack traversal. This hook uses @code_dispatch, so it can be customized
based on which function the frame is executing.

next_inner is the thing that the frame is currently busy with:
either the next Frame in the list of Stack.frames, or else
the Stack.leaf (which may be None) if there is no next frame.

The elaborate_frame() hook may modify the attributes of frame,
such as by setting Frame.hide. It may also redirect the remainder of
the stack trace, by returning an object or sequence of objects that
should be unwrapped to become the new next_inner. If the return value
is a sequence and it ends with next_inner, then the items before
next_inner are inserted before the remainder of the stack trace
instead of replacing it. If you don’t want to affect the rest of the
stack trace, then return None (equivalent to next_inner). If you want to
remove the rest of the stack trace and not replace it with anything,
then return PRUNE (which is equivalent to an empty tuple).

	
stackscope.PRUNE

	Sentinel value which may be returned by elaborate_frame() to indicate
that the remainder of the stack (containing the direct and indirect callees
of the frame being elaborated) should not be included in the extracted
stackscope.Stack.

	
stackscope.customize(target: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, *inner_names: str [https://docs.python.org/3/library/stdtypes.html#str], hide: bool [https://docs.python.org/3/library/functions.html#bool] = False, hide_line: bool [https://docs.python.org/3/library/functions.html#bool] = False, prune: bool [https://docs.python.org/3/library/functions.html#bool] = False, elaborate: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Frame, object [https://docs.python.org/3/library/functions.html#object]], object [https://docs.python.org/3/library/functions.html#object]] | None [https://docs.python.org/3/library/constants.html#None] = None) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Shorthand for common elaborate_frame() customizations
which affect how stack extraction interacts with invocations of
specific functions.

(target, *inner_names) identifies a code object; all frames
executing that code object will receive the customizations
specified by the keyword arguments to customize().
Typically you would a function as target, with no inner_names,
to customize frames that are executing that function. You only
need inner_names if you’re trying to name a nested function; see
get_code() for details.

If you don’t specify a target, then customize() returns a
partially bound invocation of itself so that you can use it as a
decorator. The target in that case is the decorated function; the
decorator returns that function unchanged. (Note the distinction:
@customize decorates the function whose frames get the custom
behavior, while @elaborate_frame.register decorates the function
that implements the custom behavior.)

The customizations are specified by the keyword arguments you pass:

	If elaborate is specified, then it will be registered as an
elaborate_frame hook for the matching frames.

	If hide is True, then the matching frames will have their
Frame.hide attribute set to True, indicating that they should
not be shown by default when printing the stack.

	If hide_line is True, then the matching frames will have their
Frame.hide_line attribute set to True, indicating that the executing
line should not be shown by default when printing the stack (but the
function info and contexts still will be).

	If prune is True, then direct and indirect callees of
the matching frames will not be included when extracting the
stack. This option only has effect if elaborate either is
unspecified or returns None.

	
stackscope.unwrap_context(manager: ContextManager [https://docs.python.org/3/library/typing.html#typing.ContextManager][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | AsyncContextManager [https://docs.python.org/3/library/typing.html#typing.AsyncContextManager][Any [https://docs.python.org/3/library/typing.html#typing.Any]], context: Context) → None [https://docs.python.org/3/library/constants.html#None] | ContextManager [https://docs.python.org/3/library/typing.html#typing.ContextManager][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | AsyncContextManager [https://docs.python.org/3/library/typing.html#typing.AsyncContextManager][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][()]

	Hook for extracting an inner context manager from another
context manager that wraps it. The stackscope context object is
also provided in case it’s useful. Return None if there is no further
unwrapping to do. Return PRUNE (equivalent to an empty tuple)
to hide this context manager from the traceback. Unlike
unwrap_stackitem(), it is not currently supported to let the
result of unwrapping a context manager be a sequence of multiple
context managers.

Note

If the original context manager is currently exiting, the
frames implementing its __exit__ will appear on the stack
regardless of any unwrapping you do here. You can customize
elaborate_frame() for the appropriate __exit__ if you
want to affect the display there as well.

	
stackscope.unwrap_context_generator(frame: Frame, context: Context) → None [https://docs.python.org/3/library/constants.html#None] | ContextManager [https://docs.python.org/3/library/typing.html#typing.ContextManager][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | AsyncContextManager [https://docs.python.org/3/library/typing.html#typing.AsyncContextManager][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][()]

	Hook for extracting an inner context manager from the outermost
frame of a generator-based context manager that wraps it. This
hook uses @code_dispatch, so
it can be customized based on the identity of the function that
implements the context manager. Apart from that, its semantics
are equivalent to unwrap_context().

Note

If the context manager you’re unwrapping uses yield from,
it’s possible that you’ll need to access callees of frame to
implement your logic. You can find these using Context.inner_stack,
or if that’s None because the context is currently exiting, you can
reconstruct it using stackscope.extract(context.obj.gen).

	
stackscope.elaborate_context(manager: ContextManager [https://docs.python.org/3/library/typing.html#typing.ContextManager][Any [https://docs.python.org/3/library/typing.html#typing.Any]] | AsyncContextManager [https://docs.python.org/3/library/typing.html#typing.AsyncContextManager][Any [https://docs.python.org/3/library/typing.html#typing.Any]], context: Context) → None [https://docs.python.org/3/library/constants.html#None]

	Hook for providing additional information about a context manager
encountered during stack traversal. It should modify the
attributes of the provided context object (a Context) based on
the provided manager (the actual context manager, i.e., the thing
whose type has __enter__ and __exit__ attributes).

Low-level introspection tools and utilities

In order to implement its context manager analysis, stackscope includes some
fairly arcane bits of Python introspection lore, including bytecode analysis
and inspection of raw frame objects using ctypes [https://docs.python.org/3/library/ctypes.html#module-ctypes]. The stackscope.lowlevel
module provides direct access to these lower-level bits, in case you want to
use them for a different purpose. It also collects a few of the utilities
used to track code objects for the stackscope.elaborate_frame()
customization hook, in the hope that they might find some broader use.

These are supported public APIs just like the rest of the library;
their membership in the lowlevel module is primarily
because the problems they solve aren’t directly relevant to the
typical end user.

Extracting context managers

	
stackscope.lowlevel.contexts_active_in_frame(frame: types.FrameType, origin: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, next_inner: types.FrameType | None [https://docs.python.org/3/library/constants.html#None] = None) → List [https://docs.python.org/3/library/typing.html#typing.List][Context]

	Inspects the given frame to try to determine which context
managers are currently active; returns a list of
stackscope.Context objects describing the active context
managers from outermost to innermost.

This is the entry point to the frame-analysis functions in
stackscope.lowlevel from the rest of the library. All the others
are indirectly called from this one.

There are two implementations of this function with different
tradeoffs. By default, the most capable one that appears to work
in your environment will be chosen; you can override this choice
using set_trickery_enabled(). See the documentation of that
function for more information.

If frame is the frame of a generator or coroutine, then you are
encouraged to pass that generator or coroutine as the origin parameter.
This is required in order to get context manager information on CPython 3.11
and later when using the (fallback/safer) “referents” implementation.

next_inner should be the frame that frame is currently calling, if any.
This is necessary to set the stackscope.Context.obj attribute correctly
on a context manager that is currently exiting.

	
stackscope.lowlevel.set_trickery_enabled(enabled: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None]) → None [https://docs.python.org/3/library/constants.html#None]

	Choose which of the two available implementations of
contexts_active_in_frame() should be used. This is a global setting.

The “trickery” implementation (enabled = True) uses ctypes [https://docs.python.org/3/library/ctypes.html#module-ctypes]
frame object introspection and bytecode analysis to determine all
available information about context managers. It works on
currently-executing frames and there are presently no known
situations in which it can be fooled.

The “referents” implementation (enabled = False) uses
gc.get_referents() [https://docs.python.org/3/library/gc.html#gc.get_referents] to locate __exit__ and __aexit__
methods referenced by the frame. It doesn’t support executing
frames on CPython (but does on PyPy, and supports suspended frames
on CPython such as in a generator object/coroutine). It can’t
tell which line a context manager started on or what name it was
assigned to; you just get the context manager object and an
is-async flag. It can be fooled by context managers whose
__exit__ methods are not implemented by functions that know
their name is __exit__, and by frames that keep direct
references to methods called __exit__ for reasons unrelated to
an active context manager in that frame. In exchange for these
limitations, you get increased portability and robustness: it
should be impossible by construction to crash the interpreter
using this implementation, while with the “trickery”
implementation you’re putting more trust in our level of testing
and caution.

The default on CPython and (PyPy with the default “incminimark”
garbage collector) is to attempt trickery-based analysis of a simple
function the first time context managers need to be extracted, and
to use trickery as long as that works. On other Python implementations
the “referents” implementation is used. You may request a return to this
dynamic default by passing enabled = None.

Frame analysis pieces

	
stackscope.lowlevel.analyze_with_blocks(code: types.CodeType [https://docs.python.org/3/library/types.html#types.CodeType]) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], Context]

	Analyze the bytecode of the given code object, returning a
partially filled-in Context object for each with or
async with block.

Each key in the returned mapping uniquely identifies one with
or async with block in the function, by specifying the
bytecode offset of the WITH_CLEANUP_START (3.8 and earlier),
WITH_EXCEPT_START (3.9 and 3.10), or PUSH_EXC_INFO (3.11+)
instruction that begins its associated exception handler. The
corresponding value is a Context object appropriate
to that block, with the is_async, varname, and start_line
fields filled in.

	
stackscope.lowlevel.inspect_frame(frame: types.FrameType) → FrameDetails

	Return a FrameDetails object describing the exception handlers
and evaluation stack for the currently executing or suspended
frame frame.

There are three implementations of this function: one for CPython 3.8-3.10,
one for CPython 3.11+, and one for PyPy when using the “incminimark” garbage
collector. The appropriate one will be chosen automatically.

	
class stackscope.lowlevel.FrameDetails(blocks: List[FinallyBlock] = <factory>, stack: List[object] = <factory>)

	A collection of internal interpreter details relating to a currently
executing or suspended frame.

	
class FinallyBlock(handler: int [https://docs.python.org/3/library/functions.html#int], level: int [https://docs.python.org/3/library/functions.html#int])

	Information about a currently active exception-catching context
within the frame.

On CPython 3.11+, these are inferred from the “zero-cost
exception handling” co_exceptiontable attribute of the
code object. On earlier CPython and all PyPy, they are
directly tracked at runtime by the frame object.

	
handler: int [https://docs.python.org/3/library/functions.html#int]

	The bytecode offset to which control will be transferred if an
exception is raised.

	
level: int [https://docs.python.org/3/library/functions.html#int]

	The value stack depth at which the exception handler begins execution.

	
blocks: List[FinallyBlock]

	Currently active exception-catching contexts in this frame
(includes context managers too) in order from outermost to
innermost

	
stack: List[object [https://docs.python.org/3/library/functions.html#object]]

	All values on this frame’s evaluation stack. This may be truncated at the
position where an exception would unwind to, if the frame is currently
executing and we don’t know its actual stack depth. Null pointers are
rendered as None and local variables (including cellvars/freevars) are
not included.

	
stackscope.lowlevel.currently_exiting_context(frame: types.FrameType) → ExitingContext | None [https://docs.python.org/3/library/constants.html#None]

	If frame is currently suspended waiting for one of its context
managers’ __exit__ or __aexit__ methods to complete, then
return an object indicating which context manager is exiting and
whether it’s async or not. Otherwise return None.

This function uses some rather involved bytecode introspection,
but only via public interfaces, and should always be safe to call
even if something is incorrect in its output. It is used in
the “referents” mode of contexts_active_in_frame() as well as
“trickery” mode, because an exiting context manager is no longer
referenced by its frame’s value stack.

For the curious, the implementation of this function contains
extensive comments about the bytecode sequences to which context
managers compile on different Python versions.

	
class stackscope.lowlevel.ExitingContext(is_async: bool [https://docs.python.org/3/library/functions.html#bool], cleanup_offset: int [https://docs.python.org/3/library/functions.html#int])

	Information about the sync or async context manager that’s
currently being exited in a frame.

	
is_async: bool [https://docs.python.org/3/library/functions.html#bool]

	True for an async context manager, False for a sync context manager.

	
cleanup_offset: int [https://docs.python.org/3/library/functions.html#int]

	The bytecode offset of the WITH_CLEANUP_START or WITH_EXCEPT_START instruction
that begins the exception handler associated with this context manager.

	
stackscope.lowlevel.describe_assignment_target(insns: List [https://docs.python.org/3/library/typing.html#typing.List][Instruction [https://docs.python.org/3/library/dis.html#dis.Instruction]], start_idx: int [https://docs.python.org/3/library/functions.html#int]) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Given that insns[start_idx] and beyond constitute a series of
instructions that assign the top-of-stack value somewhere, this
function returns a string description of where it’s getting
assigned, or None if we can’t figure it out. Understands simple
names, attributes, subscripting, unpacking, and
positional-only function calls.

Code-object-based dispatch utilities

	
stackscope.lowlevel.get_code(thing: object [https://docs.python.org/3/library/functions.html#object], *nested_names: str [https://docs.python.org/3/library/stdtypes.html#str]) → types.CodeType [https://docs.python.org/3/library/types.html#types.CodeType]

	Return the code object that implements the behavior of thing or of
a function nested inside it.

thing should be a code object or a callable: a function, method,
or functools.partial [https://docs.python.org/3/library/functools.html#functools.partial] object. If thing is a callable, it will be
unwrapped if necessary to yield a function (looking inside methods,
following decorator-produced wrappers to the original decorated function,
and so forth), and then the function’s code object will be extracted.
(If thing is already a code object, it is used as-is at this stage.)

If no nested_names are provided, then the code object obtained
through the actions in the previous paragraph is returned
directly. Otherwise, each of the nested_names is used to look up
a function or class whose definition is nested inside the function
we’re working with. The code object that results at the end of
this traversal is returned from get_code().

A somewhat contrived example:

def make_calc(mult, add):
 class C:
 def __init__(self, addend):
 self.addend = addend
 def calculate(val):
 return val * mult + self.addend
 return C(add)

calc_code = get_code(make_calc, "C", "calculate")
calc_obj = make_calc(5, 2)
assert calc_obj.calculate.__func__.__code__ is calc_code
assert calc_obj.calculate(3) == (3 * 5) + 2 == 17

	
stackscope.lowlevel.code_dispatch(code_from_arg: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[T], types.CodeType [https://docs.python.org/3/library/types.html#types.CodeType]]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Concatenate [https://docs.python.org/3/library/typing.html#typing.Concatenate][T, P]], R]], _CodeDispatcher[T, P, R]]

	Decorator for a function that should dispatch to different
specializations depending on the code object associated with its
first argument. Similar to functools.singledispatch [https://docs.python.org/3/library/functools.html#functools.singledispatch], except that
singledispatch [https://docs.python.org/3/library/functools.html#functools.singledispatch] dispatches on the type of its first
argument rather than the implementation of something associated
with its first argument.

“Associated with” is determined by the required code_from_arg argument,
a callable which will be used to extract a code object from the first
argument of the decorated function each time it is called. For example,
a function that operates on Python frames, and wants to operate differently
depending on what function those frames are executing, might pass
lambda frame: frame.f_code as its code_from_arg.

Example use: creating a registry of “should this frame be hidden?” logic:

The argument to code_dispatch() is used to obtain a code object
from the first argument of each call to should_hide_frame()
@code_dispatch(lambda frame: frame.f_code)
def should_hide_frame(frame: types.FrameType) -> bool:
 return "__tracebackhide__" in frame.f_locals

Hide any outcome.capture() or outcome.acapture() frames
@should_hide_frame.register(outcome.capture)
@should_hide_frame.register(outcome.acapture)
def hide_captures(frame: types.FrameType) -> bool:
 return True

As with singledispatch [https://docs.python.org/3/library/functools.html#functools.singledispatch], the decorated function has some
additional attributes in addition to being callable:

	Use @func.register(target, *names) as a decorator to register
specializations. (target, *names) identifies a code object as
documented under get_code(). register() also supports
invocation as a non-decorator func.register(target, *names, impl).

	Use func.dispatch(first_arg) to return the function that will
be invoked for calls to func(first_arg, ...).

	func.registry is a read-only mapping whose keys are code objects
and whose values are the corresponding specializations of the
@code_dispatch-decorated function.

	
class stackscope.lowlevel.IdentityDict(items: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][K, V]] = ())

	Bases: MutableMapping [https://docs.python.org/3/library/typing.html#typing.MutableMapping][K, V]

A dict that hashes objects by their identity, not their contents.

We use this to track code objects, since they have an expensive-to-compute
hash which is not cached. You can probably think of other uses too.

Single item lookup, assignment, deletion, and setdefault() are
thread-safe because they are each implented in terms of a single call to
a method of an underlying native dictionary object.

Release history

stackscope 0.2.2 (2024-02-27)

Bugfixes

	Fixed an inspection error that could occur on Python 3.11 when the subject
expression of an async with block covers multiple source lines. (#14 [https://github.com/oremanj/stackscope/issues/14])

	Update greenback [https://greenback.readthedocs.io/en/latest/reference.html#module-greenback] glue to support the internal reorganizations in
version 1.2.0. (#15 [https://github.com/oremanj/stackscope/issues/15])

stackscope 0.2.1 (2024-02-02)

Bugfixes

	Fixed inspection of async context managers that contain a CLEANUP_THROW
bytecode instruction in their __aenter__ sequence. This can appear on 3.12+
if you write an async context manager inside an except or finally block,
and would previously produce an inspection warning. (#11 [https://github.com/oremanj/stackscope/issues/11])

	The first invocation of stackscope.extract() no longer leaves a
partially-exhausted async generator object to be garbage collected,
which previously could confuse async generator finalization hooks. (#12 [https://github.com/oremanj/stackscope/issues/12])

stackscope 0.2.0 (2023-12-22)

With this release, stackscope can print full Trio task trees out-of-the-box.
Try print(stackscope.extract(trio.lowlevel.current_root_task(),
recurse_child_tasks=True)).

Backwards-incompatible changes

	The unwrap_context() hook now
accepts an additional Context argument. This saves on duplicated effort
between elaborate_context() and unwrap_context(), avoiding
exponential time complexity in some pathological cases.

	Removed support for Python 3.7.

User-facing improvements to core logic

	Added support for representing child tasks in structured concurrency libraries,
by allowing Context.children to contain Stacks in addition to the
existing support for child Contexts. By default, the child tasks will
not have their frames filled out, but you can override this with the new
recurse_child_tasks parameter to extract().
(#9 [https://github.com/oremanj/stackscope/issues/9])

	Added Frame.hide_line and Context.hide attributes for more precise
control of output.

	Added a new attribute Stack.root which preserves the original “stack item”
object that was passed to extract(). For stacks generated from async
child tasks, this will be the Task object.

	Added support for Python 3.12.

Library support (“glue”) improvements

	stackscope can now trace seamlessly across Trio/thread boundaries when
extracting a stack that includes calls to trio.to_thread.run_sync() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.to_thread.run_sync]
and/or trio.from_thread.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.from_thread.run]. The functions running in the
cross-thread child will appear in the same way that they would if they
had been called directly without a thread transition.
(#8 [https://github.com/oremanj/stackscope/issues/8])

	Added glue to support pytest-trio.
(#4 [https://github.com/oremanj/stackscope/issues/4])

	Updated Trio glue to support unwrapping trio.lowlevel.Task [https://trio.readthedocs.io/en/stable/reference-lowlevel.html#trio.lowlevel.Task]s and filling
in the child tasks of a trio.Nursery [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery].

Improvements for glue developers

	A library can now ship its own stackscope customizations
without requiring that all of its users install stackscope. Any module may
define a function called _stackscope_install_glue_(), which stackscope will
call when it is first used to extract a stack trace after the module has been
imported. (#7 [https://github.com/oremanj/stackscope/issues/7])

	Added unwrap_context_generator() hook for more specific customization
of generator-based context managers.

	Modified the elaborate_frame() hook to be able to return a sequence
of stack items rather than just a single one. This permits more expressive
augmentation rules, such as inserting elements into the stack trace without
removing what would’ve been there if the hook were not present.

	Added a new function extract_child() for use in customization hooks.
It is like extract() except that it reuses the options that were
specified for the outer extract() call, and contains some additional
logic to prune child task frames if the outer extract() didn’t ask
for them.

	elaborate_frame() now runs after Frame.contexts is populated,
so it has the chance to modify the detected context managers.

stackscope 0.1.0 (2023-04-12)

Initial release.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 stackscope	

 	
 	
 stackscope.lowlevel	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | U
 | V
 | Y

A

 	
 	analyze_with_blocks() (in module stackscope.lowlevel)

 	as_stdlib_summary() (stackscope.Frame method)

 	(stackscope.Stack method)

 	
 	as_stdlib_summary_with_contexts() (stackscope.Frame method)

B

 	
 	blocks (stackscope.lowlevel.FrameDetails attribute)

C

 	
 	children (stackscope.Context attribute)

 	cleanup_offset (stackscope.lowlevel.ExitingContext attribute)

 	clsname (stackscope.Frame property)

 	code_dispatch() (in module stackscope.lowlevel)

 	
 	Context (class in stackscope)

 	contexts (stackscope.Frame attribute)

 	contexts_active_in_frame() (in module stackscope.lowlevel)

 	currently_exiting_context() (in module stackscope.lowlevel)

 	customize() (in module stackscope)

D

 	
 	describe_assignment_target() (in module stackscope.lowlevel)

 	
 	description (stackscope.Context attribute)

E

 	
 	elaborate_context() (in module stackscope)

 	elaborate_frame() (in module stackscope)

 	error (stackscope.Stack attribute)

 	ExitingContext (class in stackscope.lowlevel)

 	
 	extract() (in module stackscope)

 	extract_child() (in module stackscope)

 	extract_outermost() (in module stackscope)

 	extract_since() (in module stackscope)

 	extract_until() (in module stackscope)

F

 	
 	filename (stackscope.Frame property)

 	fill_context() (in module stackscope)

 	format() (stackscope.Context method)

 	(stackscope.Frame method)

 	(stackscope.Stack method)

 	
 	format_flat() (stackscope.Stack method)

 	Frame (class in stackscope)

 	FrameDetails (class in stackscope.lowlevel)

 	FrameDetails.FinallyBlock (class in stackscope.lowlevel)

 	frames (stackscope.Stack attribute)

 	funcname (stackscope.Frame property)

G

 	
 	get_code() (in module stackscope.lowlevel)

H

 	
 	handler (stackscope.lowlevel.FrameDetails.FinallyBlock attribute)

 	hide (stackscope.Context attribute)

 	(stackscope.Frame attribute)

 	
 	hide_line (stackscope.Frame attribute)

I

 	
 	IdentityDict (class in stackscope.lowlevel)

 	inner (stackscope.StackSlice attribute)

 	inner_stack (stackscope.Context attribute)

 	inspect_frame() (in module stackscope.lowlevel)

 	
 	InspectionWarning

 	is_async (stackscope.Context attribute)

 	(stackscope.lowlevel.ExitingContext attribute)

 	is_exiting (stackscope.Context attribute)

L

 	
 	leaf (stackscope.Stack attribute)

 	level (stackscope.lowlevel.FrameDetails.FinallyBlock attribute)

 	
 	limit (stackscope.StackSlice attribute)

 	lineno (stackscope.Frame attribute)

 	linetext (stackscope.Frame property)

M

 	
 	modname (stackscope.Frame property)

 	
 module

 	stackscope

 	stackscope.lowlevel

O

 	
 	obj (stackscope.Context attribute)

 	
 	origin (stackscope.Frame attribute)

 	outer (stackscope.StackSlice attribute)

P

 	
 	PRUNE (in module stackscope)

 	
 	pyframe (stackscope.Frame attribute)

R

 	
 	root (stackscope.Stack attribute)

S

 	
 	set_trickery_enabled() (in module stackscope.lowlevel)

 	Stack (class in stackscope)

 	stack (stackscope.lowlevel.FrameDetails attribute)

 	StackItem (class in stackscope)

 	
 stackscope

 	module

 	
 	
 stackscope.lowlevel

 	module

 	StackSlice (class in stackscope)

 	start_line (stackscope.Context attribute)

U

 	
 	unwrap_context() (in module stackscope)

 	
 	unwrap_context_generator() (in module stackscope)

 	unwrap_stackitem() (in module stackscope)

V

 	
 	varname (stackscope.Context attribute)

Y

 	
 	yields_frames() (in module stackscope)

 nav.xhtml

 Table of Contents

 		
 stackscope: unusually detailed Python stack introspection

 		
 Extracting and inspecting stacks

 		
 Extracting a stack

 		
 extract()

 		
 extract_since()

 		
 extract_until()

 		
 extract_outermost()

 		
 StackSlice

 		
 StackItem

 		
 InspectionWarning

 		
 Working with stacks

 		
 Stack

 		
 Frame

 		
 Context

 		
 Customizing stackscope for your library

 		
 Overview of customization hooks

 		
 Frames

 		
 Contexts

 		
 Utilities for use in customization hooks

 		
 extract_child()

 		
 fill_context()

 		
 Customization hooks reference

 		
 unwrap_stackitem()

 		
 yields_frames()

 		
 elaborate_frame()

 		
 PRUNE

 		
 customize()

 		
 unwrap_context()

 		
 unwrap_context_generator()

 		
 elaborate_context()

 		
 Low-level introspection tools and utilities

 		
 Extracting context managers

 		
 contexts_active_in_frame()

 		
 set_trickery_enabled()

 		
 Frame analysis pieces

 		
 analyze_with_blocks()

 		
 inspect_frame()

 		
 FrameDetails

 		
 currently_exiting_context()

 		
 ExitingContext

 		
 describe_assignment_target()

 		
 Code-object-based dispatch utilities

 		
 get_code()

 		
 code_dispatch()

 		
 IdentityDict

 		
 Release history

 		
 stackscope 0.2.2 (2024-02-27)

 		
 Bugfixes

 		
 stackscope 0.2.1 (2024-02-02)

 		
 Bugfixes

 		
 stackscope 0.2.0 (2023-12-22)

 		
 Backwards-incompatible changes

 		
 User-facing improvements to core logic

 		
 Library support (“glue”) improvements

 		
 Improvements for glue developers

 		
 stackscope 0.1.0 (2023-04-12)

_static/minus.png

_static/plus.png

_static/file.png

